Apakah kamu masih ingat pengertian bilangan bulat yang telah kalian pelajari di Sekolah Dasar? Untuk mengingatnya kembali perhatikan pelajaran berikut.
1 Pengertian Bilangan Bulat
Pernahkah kalian pergi ke kebun binatang? Hewan apasajakah yang kalian lihat di sana? Tentu banyak sekali hewan-hewan yang dapat kalian lihat. Ada harimau, gajah, jerapah, dan hewan-hewan lainnya. Dapatkah kalian menghitung jumlah hewan-hewan tersebut?Misalkan jumlah harimau ada 20 ekor dan jumlah gajah ada 15 ekor. Bilangan 20 dan 15 yang kalian kenal merupakan contoh dari bilangan bulat. Ternyata dengan bilangan bulat kalian dapat menghitung apa saja yang ada di sekitar kita. Selain dua contoh bilangan bulat yang disebutkan tadi, dalam matematika ada begitu banyak bilangan bulat yang jumlahnya tak terhingga. Bilangan apa sajakah yang termasuk dalam kelompok himpunan bilangan bulat?
a. Bilangan Bulat Positif, Bilangan Bulat Negatif, dan Nol
Dari kebun binatang, mari alihkan perhatian kita ke suatu tempat yang tinggi di permukaan bumi. Kita mengenal tempat tersebut sebagai daerah pegunungan. Bagaimanakah suhu udara di pegunungan? Tentunya dingin, bukan? Suhu udara menjadi semakin dingin ketika kita berada di puncak gunung yang tinggi. Suhu udara di pegunungan tinggi dan bersalju dapat mencapai 20 derajat Celsius di bawah nol. Dalam matematika, kuantitas 20 derajat Celsius di bawah nol ditulis/dinyatakan sebagai –20ºC dan dibaca negatif 20ºC.Dari pegunungan, selanjutnya kita beralih ke laut. Misalkan ada seorang penyelam yang sedang berada 15 meter di bawah permukaan laut. Dalam matematika, kuantitas 15 meter di bawah permukaan laut ditulis sebagai –15 meter dan dibaca negatif 15 meter. Bilangan-bilangan seperti 20, 15, –20, dan –15 memiliki besaran angka yang sama namun dengan tanda yang berbeda. Di dalam matematika, bilangan 20 dan 15 tergolong kelompok bilangan bulat positif sedangkan bilangan –20 dan –15 tergolong kelompok bilangan bulat negatif. Di samping dua jenis bilangan bulat tersebut, terdapat satu bilangan bulat yang bukan bilangan negatif dan positif. Bilangan itu adalah nol (0), sehingga himpunan bilangan bulat terdiri atas bilangan bulat positif, bilangan bulat negatif, dan nol. Himpunan bilangan bulat dinotasikan dengan B = {..., –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5, ...} dan dapat ditulis dalam garis bilangan seperti di bawah ini. Gambar 1.3 Garis bilangan bulat
b. Hubungan Antarbilangan Bulat
Perhatikan kembali Gambar 1.3. Pada garis bilangan tersebut terlihat bahwa semakin ke kanan bilangannya semakin besar. Misalnya –1 dan 2. Bilangan 2 terletak di sebelah kanan bilangan –1 sehingga –1 kurang dari 2 atau ditulis –1 < 2. Sebaliknya, semakin ke kiri bilangannya semakin kecil. Misalnya –5 dan –2. Bilangan –5 terletak di sebelah kiri bilangan –2 sehingga –2 lebih dari –5 atau –2 > –5. Coba berikan contoh yang lain. Apakah hubungan tersebut berlakuuntuk semua bilangan bulat, baik bilangan bulat positif, negatif, dan nol? Selidikilah!LATIHAN 1
1. Susunlah bilangan berikut menurut urutan naik.a. 27, –24, 30, 26, –2
b. 36, 4, –4, –8, 20
c. –2, 6, 8, 4, –3, –5
d. –3, –6, –2, 8, 6
2. Susunlah bilangan berikut menurut urutan turun.
a. 4, 6, 9, –4, 18
b. 2, –5, 8, –2, 4
c. 4, –6, 8, 2, 10
d. 6, –4, –6, –2, 4
3. Tentukanlah temperatur berikut ini.
a. Suhu suatu tempat 5 derajat lebih dari 24°C.
b. Suhu suatu tempat 15 derajat kurang dari 2°C.
c. Suhu suatu tempat 6 derajat kurang dari –5°C.
d. Suhu suatu tempat 10 derajat lebih dari –12°C.
4. Tempat A berjarak 120 m dari sekolah,tempat B berjarak 200 m dari A dan tempat C berjarak 900 m dari sekolah. Jika tempat A, B, dan C berurutan dan membentuk garis lurus dari sekolah,tentukanlah jarak:
a. tempat A dari C,
b. tempat B dari C.
5. Suhu suatu tempat 8 derajat kurang dari –2°C. Pernyataan ini sama dengan suhu suatu tempat lebih 6°C dari suhu berapaderajat?
6. Masih ingatkah kamu dengan bilangan cacah? Jika himpunan bilangan bulat dikurangi himpunan bilangan cacah, himpunan bilangan apakah yang terbentuk?Diskusikanlah bersama teman-temanmu.
Tidak sesuai
ReplyDelete